MoniWiki¸Þ¸ðÀå_¹°¸®
Login:
Password:
´ë¹®|ã±â|¹Ù²ï±Û|¸ñ·Ï|¸Þ¸ðÀå|Ã¥°¥ÇÇ|¿¬²É|¸µÅ©
Edit Diff Reload Search Print Info Mail Help RSS

@ 2004-11-23 @

  °ÔÀÓ¿¡¼­ÀÇ ¹°¸®ÇÐ (±è¼º¿Ï »ù °¨»ç^^)
1 Çϵå¿þ¾î °¡¼Ó
2 °ÔÀÓ¿¡¼­ÀÇ ¹°¸®ÇÐ
2.1 Euler's Method
2.2 Hook's law
2.3 Verlet Intergrator
3 Chaos
4 Jump ±âº»·ÎÁ÷
{_r} ¸Þ¸ðÀåÀ¸·Î °¡±â

* Ãæµ¹Âü°í

1 Çϵå¿þ¾î °¡¼Ó #

#.PPU(¹°¸®¿¬»ê ÇÁ·Î¼¼½º À¯´Ö) ; CPU°¡ ´ã´çÇÏ´Â À̹ÌÁö Àç»ý°ú °ü·ÃµÈ ¹°¸® ¿¬»êÀ» Àü´ãÇÏ´Â ÁÖº¯±â±â
/ ÄÜ¼Ö °ÔÀÓÇÁ·Î¼¼½Ì ó¸® °³³ä = CPU + GPU + PPU

#.GPU (Graphics Processing Unit)´Â
Áß¾Óó¸®ÀåÄ¡ÀÎ CPU¸¸À¸·Î °íÁ¤¹ÐµµÀÇ ±×·¡ÇÈÀ» ´Üµ¶À¸·Î ó¸®Çϱ⿡ ¹«¸®°¡ Àֱ⠶§¹®¿¡, À̸¦ º¸Á¶Çϱâ À§ÇÏ¿© 3D±×·¡ÇÈ ¿¬»ê Àü¿ëÀÇ ÇÁ·Î¼¼¼­ GPU°¡ °³¹ß µÇ¾ú½À´Ï´Ù.

GPU¶ó´Â ¿ë¾î´Â ¿£ºñµð¾Æ(NVIDIA)»ç¿¡¼­ 1999³â¿¡ ¡®ÁöÆ÷½º(GeForce)¡¯¶ó´Â À̸§ÀÇ »õ·Î¿î ±×·¡ÇÈ ÄÁÆ®·Ñ·¯(Graphics Controller: ±×·¡ÇÈÄ«µå¿ë Ĩ)À» ³»³õÀ¸¸ç óÀ½ Á¦Ã¢ÇÑ °ÍÀÌ´Ù. ÁöÆ÷½º´Â CPUÀÇ µµ¿ò ¾øÀÌ ÀÚüÀûÀ¸·Î Æú¸®°ï(Polygon: 3D ±×·¡ÇÈÀ» ±¸¼ºÇÏ´Â µµÇü)ÀÇ º¯Çü(Transform) ¹× ±¤¿ø(Lighting)È¿°ú¸¦ ±¸»çÇÏ´Â ±â´É, À̸¥¹Ù ¡®Çϵå¿þ¾î(Hardware) T&L¡¯À» °®Ãß°í ÀÖ¾ú´Ù. ÀÌ´Â ÀÌÀü±îÁö »ç¿ëÇß´ø ±×·¡ÇÈ ÄÁÆ®·Ñ·¯¿Í´Â È®¿¬È÷ ´Ù¸¥ °³³äÀ̾ú±â ¶§¹®¿¡ À̸¦ ±¸ºÐÇÏ°íÀÚ GPU¶ó´Â À̸§ÀÌ ºÙ°Ô µÇ¾ú´Ù. ±×¸®°í ÁöÆ÷½ºÀÇ Ãâ½Ã ÈÄ 1³âÀÌ Áö³­ 2000³â, ATi(ÇöÀçÀÇ AMD)»ç¿¡¼­ ¡®¶óµ¥¿Â(Radeon)¡¯À̶ó´Â GPU¸¦ Ãâ½ÃÇÏ°Ô µÇ¸é¼­ ¾ç»çÀÇ °æÀïÀÌ º»°ÝÈ­ µÈ´Ù.

#.ÀÎÅÚ > Havok - ¹°¸® °è»êÀ» CPU¿¡¼­ º¸Á¶ ¿ªÇÒÀ» ´ã´ç


-. Çï°ÔÀÌÆ®´Â Á¤»óÀûÀÎ °æ¿ì, ½Ì±Û ÇÁ·Î¼¼½º·Î ÀÛµ¿À» ÇÏÁö¸¸
¹è°æ ¼³Á¤À̳ª ÀÌÆåÆ® µî¿¡ ¹°¸®(ÇϺ¹) ¿¬»êÀÌ ÁøÇàµÉ ¶§, ´Ù¸¥ ÇÁ·Î¼¼½º°¡ ÀÛµ¿
--> ½ÉÇÒ °æ¿ì, ¹°¸® °è»êÀÌ ³¡³¯ ¶§±îÁö È­¸éÀÌ ¸ØÃß´Â Çö»ó ¹ß»ý

#.NVIDIA > (AGEIA) PhysX - ¹°¸® °è»êÀ» ±×·¡ÇÈÄ«µå¿¡¼­ º¸Á¶ ¿ªÇÒÀ» ´ã´ç


2 °ÔÀÓ¿¡¼­ÀÇ ¹°¸®ÇÐ #

2.1 Euler's Method #

  • ÈûF(t) = m*A ( m´Â Áú·®, A´Â °¡¼Óµµ )
    F(t)¸¦ ¾Ë°í ÀÖÀ» ¶§, ¹ÌºÐ¹æÁ¤½ÄÀ» À§Ä¡¿¡ ´ëÇؼ­ Ǭ´Ù¸é ½Ã°£¿¡ µû¸¥ À§Ä¡°ªR(t)À» ¾Ë¼ö ÀÖ´Ù.
  • ¥Ät<<1 ( ¥Ät°¡ ÃæºÐÈ÷ ÀÛ´Ù¸é )
    ¦£ Rnew = Rold + Vnew£ª¥Ät ( RÀº À§Ä¡, Rold´Â ÃʱâÀ§Ä¡ ) {_-} À§Ä¡ÀÇ °ªÀÌ Èû¿¡ ¿µÇâÀ» ¹ÌÄ£´Ù.
    ¦¦ Vnew = Vold + F/m£ª¥Ät ( V´Â ¼Óµµ, Vold´Â Ãʱâ¼Óµµ )

2.2 Hook's law #

  • ½ºÇÁ¸µ°è¼ö(ks); ÆÄƼŬ °£ÀÇ ÀÀÁý·Â {_-} ¿îµ¿À» À¯¹ß½ÃÅ´
    -1) °è¼ö°¡ Ŭ¼ö·Ï ¸ð¾çÀ» ±×´ë·Î À¯ÁöÇÒ·Á´Â ÈûÀ¸·Î ÀÛ¿ë
    --> ÀÓÀÇÀÇ ÇÑ°èÄ¡¸¦ ³ÑÀ» °æ¿ì´Â ¾ðÁ¦µçÁ¦ Æø¹ßÀÇ À§Ç輺À» °¡Áö°í ÀÖ´Ù.
    -2) ½ºÇÁ¸µÀº »ó´ëÀûÀÎ À§Ä¡ÀÇ (°Å¸®¿¡ µû¸¥)º¯È­¿¡ ÀÇÇØ Åº¼ºÀÌ ¹ß»ý
  • °¨¼è°è¼ö(kd); ÀúÇ×À̳ª ¹°¼ºÄ¡¿¡ ÀÇÇÑ º¯È­¸¦ °¨¼Ò½ÃÅ°´Â ¿ä¼Ò
    -1) °¨¼è°è¼ö°¡ Å©¸é ¹Ý¹ßÇÏ´Â ÇÏ´Â ÈûÀÇ ÀÛ¾ÆÁø´Ù. -> µüµüÇÑ ¹°Ã¼ Ç¥Çö
    °¨¼è°è¼ö°¡ ÀÛÀ¸¸é À¯µ¿¼ºÀÌ Å« Á©¸®¿Í °°Àº ¹°ÁúÀ» Ç¥Çö ÇÒ ¼ö ÀÖ´Ù.
  • ÇÑÂÊÀÌ °íÁ¤µÇ¾î ÀÖ´Â ½ºÇÁ¸µ¿¡ Áú·® mÀÎ ¹°Ã¼°¡ ´Ù¸¥ÂÊ ³¡¿¡ ÀÖÀ» ¶§,
    ¡ÅFs = -ks(l - lo)
    ( ks´Â ½ºÇÁ¸µ»ó¼ö, lÀº ½ºÇÁ¸µÀÌ ´Ã¾î³­ ±æÀÌ, loÀº ½ºÇÁ¸µÀÇ ¿ø·¡±æÀÌ )
    ¡ÅFd = kd(v1 - v2)
    ( kd´Â °¨¼è°è¼ö, v1Àº Ãʱ⠼ӵµ, v2´Â ³ªÁß¼Óµµ, (v1 - v2)´Â »ó´ë¼Óµµ )
    ¡ÅF = Fs + Fd {_-} Euler's Method Àû¿ëÇؼ­ À§Ä¡°ªRnew¸¦ ±¸ÇÑ´Ù.
  • ¡Ø ±¸¼Ó Á¶°Ç¿¡¼­ ½ºÇÁ¸µ »ó¼ö°¡ Å« µüµüÇÑ ¹°Ã¼¿¡ ½ÉÇÑ Áøµ¿À» °¡ÇÒ °æ¿ì Æø¹ßÀÇ À§Ç輺Àº ¾ðÁ¦³ª ÀÖ´Ù.

2.3 Verlet Intergrator #

  • °³º°ÀûÀÎ ÆÄƼŬÀÇ ¿òÁ÷ÀÓÀ» °­Ã¼ ¿îµ¿À¸·Î Ç¥ÇöÇÒ ¼ö ÀÖ°í, ¿¡³ÊÁö°¡ º¸Á¸ µÊÀ¸·Î½á ¾ÈÁ¤ÀûÀÌ´Ù.
    ¡Å R( t+¥Ät ) = 2R(t) - R(t-¥Ät) + A*¥Ät©÷
  • -1) ¿ÀÀÏ·¯ ÇعýÀÇ V(¼Óµµ)¿Í R(À§Ä¡)ÀÇ Ç׸ñÀÌ 2°³ÀÇ R(À§Ä¡)·Î ´ëü
    -2) ÃʱâÄ¡ R(t-¥Ät) = R(t) - V(t)*¥Ät ·Î °è»ê
    -3) ¿¹»óÇØ´ø °á°ú°¡ ³ª¿À¸é 2~3¹ø ·çÇÁ¸¦ µ¹·Á¼­ ÇØ´ç ÇÁ·¹ÀÓ¿¡¼­ °íÁ¤½Ãų ¼ö ÀÖ´Ù.


3 Chaos #

  • Ä«¿À½º¶ó´Â ¸»Àº ±×¸®½º¾î khaos¿¡¼­ ³ª¿Â °ÍÀÌÁö¸¸ ÇöÀç´Â ÀϹÝÀûÀ¸·Î Chaos(Ä«¿À½º, È¥µ·À̶ó´Â ÀǹÌ)·Î Ç¥±âÇÑ´Ù.
    • ¾î¶² ½Ã½ºÅÛÀÇ ¾î´À ½ÃÁ¡¿¡¼­ÀÇ »óÅÂ(=ÃʱⰪ)°¡ Á¤ÇØÁö¸é ±× ÈÄÀÇ »óÅ´ ¿ø¸®ÀûÀ¸·Î ¸ðµÎ °áÁ¤µÈ´Ù°í ÇÏ´Â °áÁ¤·ÐÀû ¹ýÄ¢À» µû¸£°í ÀÖÀ½¿¡µµ ºÒ±¸ÇÏ°í, ¾ÆÁÖ º¹ÀâÇؼ­ ºÒ±ÔÄ¢ÇÏ°í ºÒ¾ÈÁ¤ÇÑ ¸Õ Àå·¡ÀÇ »óŸ¦ ¿¹ÃøÇÏ´Â °ÍÀÌ ºÒ°¡´ÉÇÑ Çö»ó
  • ÀοëµÇ´Â ½ÄÀÇ ¿¹;
    y = ax(1-x) a´Â »ó¼ö, xÀÇ ÃʱâÄ¡¸¦ 0.1À̶ó°í °¡Á¤ÇÒ ¶§,
    ´ÙÀ½¿¡ ½Ä¿¡ Àû¿ëÇÒ xÀÇ °ªÀº ÇöÀç °è»êµÈ yÀÇ °ªÀ» »ç¿ëÇÑ´Ù.(0°ú 1»çÀÌ °ª)


4 Jump ±âº»·ÎÁ÷ #

  • Á¡ÇÁ´Â Å©°Ô 3°³ÀÇ ¿µ¿ªÀ¸·Î ±¸ºÐ
    -1.À­ÂÊÀ¸·Î ÈûÀÌ ÀÛ¿ëÇÏ´Â ºÎºÐ
    -2.Á߷¿¡ ÀÇÇØ À­ÂÊÀ¸·Î ¿Ã¶ó°¡´Â ÈûÀÌ »ç¶óÁö´Â ºÎºÐ(²À´ë±â ºÎºÐ)
    -3.Á߷¿¡ ÀÇÇØ ³«ÇÏÇÏ´Â ºÎºÐ

  • ¾Æ·¡ ÄÚµåÀÇ ¹®Á¦´Â float ŸÀÔÀ» ¼­·Î ºñ±³ÇÏ´Â ±âº»ÀûÀÎ ¿À·ù¸¦ °¡Áö°í ÀÖÀ½
    -.m_fGravity += (JumpGHIGHTRAVITY * (fDelta*fDelta)*0.5f ); ¿¡¼­
    (fDelta*fDelta)*0.5f´Â ÇÁ·¹ÀÓ º¯È­¿¡ µû¸¥ Áøµ¿À» °¨¼èÇÏ´Â È¿°ú°¡ ÀÖ´Ù.
    -.¹®Á¦Á¡; ½Ã°£ÀÇ º¯È­(µ¨Å¸time)°¡ ÀÏÁ¤ÇÏÁö ¾ÊÀ» ¶§, ¸Å²ô·¯¿î ±ËÀûÀ» ¸¸µéÁö ¸øÇÑ´Ù.
    -.oldTrans; ÇöÀçÀÇ À§Ä¡
    kNewTrans; ¹Ì·¡ÀÇ À̵¿ À§Ä¡

const float JumpGHIGHTRAVITY 1800.0f
const float SAFEHEIGHT = 2.0f;
const float STARTJUMP  = 100.0f;
static float fUp = 0.0f;	

// Á¡ÇÁ ¿©ºÎ
if( !Á¡ÇÁÁß && ÇöÀç ¾Ö´Ï¸ÞÀ̼ÇÀÌ Á¡ÇÁÀΰ¡? )
{
  m_bJumpstart = true;
  m_bJump = true;
  fUp = STARTJUMP;
  m_fGravity = 0.0f;
}

if( m_bJump )  // »ó½Â ºÎºÐ
{
  m_fGravity += (JumpGHIGHTRAVITY * (fDelta*fDelta)*0.5f );
  fUp -= m_fGravity;

  if( fUp < 0.0f )
  {
    m_fGravity = 0.0f;
    m_bJump = false;
  }
  else
  {
    oldTrans.z += fUp;		
  }
}
else	// ³«ÇÏ ¿©ºÎ
{
  if( (oldTrans.z - kNewTrans.z) > SAFEHEIGHT )
  {
    m_fGravity += (JumpGHIGHTRAVITY * (fDelta*fDelta)*0.5f );
    oldTrans.z -= m_fGravity;
  }
  else
  {
    oldTrans = kNewTrans;
    m_fGravity = 0.0f;
    m_bJumpstart = false;
  }
}

  • À§ÀÇ Äڵ忡¼­ Á¡ÇÁ¸¦ °ËÃâÇÏ´Â ºÎºÐÀÌ ·ÎÁ÷ ¾È¿¡ Àֱ⠶§¹®¿¡ ÇÁ·¹ÀÓ¸¶´Ù ÆǺ°ÇÏ´Â ¹®Á¦°¡ À־
    ¿ÜºÎ¿¡¼­ Å° ÀÔ·ÂÀÌ µÇ´Â ºÎºÐ¿¡¼­ jump start¸¦ ÇÔ¼ö·Î È£ÃâÇϵµ·Ï ¼öÁ¤
    -.±ËÀûÀ» ÀÏÁ¤Çϱâ À¯Áö Çϱâ À§ÇØ Sin°î¼±À» µû¶ó¼­ »ó½Â ÈÄ Á¤Á¡¿¡¼­ ÇÔ¼ö »ç¿ëÇؼ­ ³«ÇÏ
    -.Á¡ÇÁ À̺¥Æ® ¹ß»ý½Ã ÇöÀç À§Ä¡(m_pSavePosition)¸¦ ÀúÀå ÈÄ »ó½Â±¸¿ª¿¡¼­ ±âÁØÀ¸·Î »ç¿ë
    -.Á¤»óºÎºÐ¿¡¼­ m_bJump02 = false, m_bJumpstart = false¿¡¼­ ´Ù½Ã Á¡ÇÁ°¡´É

class className
{
public:
  void StartJump();	

private:
  Point3	m_vSavePosition;
  bool	m_bJump02;	// Á¡ÇÁ À̺¥Æ®¸¦ ¹Þ¾Æ¼­ ij¸¯ÅÍ°¡ ÇöÀç »ó½Â ÁßÀÎÁö¸¦ Ç¥½Ã	
  bool 	m_bJumpstart;	// Á¡ÇÁ¸¦ ÇÒ ¼ö ÀÖ´Â »óÅ ÀÎÁö¸¦ Ç¥½Ã

  float 	m_fGravity;
  float 	m_fHightPos;
  float	m_fJumpStartTime;
  float 	m_fJumpTime;
  float	m_fJumpTimeMAX;
}
-----------------------------------------------------------------------------------
const float DEF_JumpGHIGHTRAVITY = 1600.0f;
const float DEF_JumpRAD = PI * 0.5;	// 90µµ
const float DEF_JumpMAX = 12.0f;	// jump½Ã ÃÖ°í Á¤Á¡ÀÇ ³ôÀÌ

void className::StartJump()	
{ 
  if( m_bJumpstart == true )	
    return;

  CPlayer * pkPlayer = GetPlayer();
  _TKASSERT( pkPlayer );
  
  m_pSavePosition = pkPlayer->GetWorldTranslate();

  ControllerSequence* pkSequence = pkPlayer->GetSequence(Animation_jump);
  m_fJumpTimeMAX = pkSequence->GetLength() * 1.1f;
  m_fJumpTime = m_fJumpTimeMAX * 0.5f;
  m_fJumpStartTime = GetCurTime();

  m_bJumpstart = true;
  m_bJump02 = true;
}

bool className::UpDate()
{
  ...
  // Á¡ÇÁ ¹× ³«ÇÏ ºÎºÐ - Sin°î¼±À» µû¶ó¼­ »ó½Â ÈÄ Á¤Á¡¿¡¼­ ÇÔ¼ö »ç¿ëÇؼ­ ³«ÇÏ
  //=========================================================================================
  float fjumptime = GetCurTime() - m_fJumpStartTime;

  if( m_bJump02 )	  // Á¡ÇÁ½Ã »ó½Â ±¸°£
  {
    float fjumpRAD = (fjumptime/m_fJumpTime) * DEF_JumpRAD;

    if( fjumptime < m_fJumpTime )	// »ó½Â Áß
    {
      m_fHightPos = Sin(fjumpRAD) * DEF_JumpMAX;
      m_fHightPos += m_vSavePosition.z;
    }
    else		// ÃÖ°í Á¤Á¡ºÎºÐ
    {
      m_fHightPos = m_vSavePosition.z + DEF_JumpMAX;
      m_bJump02 = false;
    }		
  }
  else  //Á¡ÇÁ°¡ ¾Æ´Ò¶§ ³«ÇÏ
  {
    if((oldTrans.z - kNewTrans.z) < 2.0f)
    {
      m_fHightPos = kNewTrans.z;
      oldTrans = kNewTrans;
    }

    if(m_fHightPos > kNewTrans.z)
    {
      m_fGravity += (DEF_JumpGHIGHTRAVITY * ((fDelta*fDelta)*0.5));
      m_fHightPos  -= m_fGravity;
    }
    else	// if(m_fHightPos <= kNewTrans.z)
    {
      m_fHightPos = kNewTrans.z;
      m_fGravity = 0.0f;
      m_bJumpstart = false;
      m_bJump02 = false;
    }
  }

  oldTrans.z = m_fHightPos;
}




{_r} ¸Þ¸ðÀåÀ¸·Î °¡±â

November, 2024
 12
3456789
10111213141516
17181920212223
24252627282930

"È£¶ûÀÌ´Â °¡Á× ¶«½Ã µðÁö°í, »ç¶÷Àº À̸§ ¶«½Ã µðÁö´Â °Å¿©!"

¸Þ¸ðÀå_¼ÒÇÁÆ®¿þ¾î3D
edu2014
HelpOnNavigation
¸Þ¸ðÀå_°¨»çÀDZæ
last modified 2014-03-17 16:09:52
°íÄ¡±â|ã±â|ÂÊ Áö¿ì±â|ºñ½ÁÇÑ ÂÊ Valid XHTML 1.0! Valid CSS! powerd by MoniWiki
0.2027 sec